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ABSTRACT

Suppose that A C R" is a bounded set of diameter 1 and that f: A — I
is a map satisfying the nearisometry condition |z — y| — e < |fz — fy| <
|z — y| + € with £ < 1. Then there is an isometry S: A — I such that
|Sz — fz| < cnv/Z for all z in A. If A satisfies a thickness condition and
if f: A — R", then there is an isometry S: R® — R"™ with |Sz — fz| <

cne/q, where g is a thickness parameter.
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1. Introduction

1.1. Let I, be the standard separable Hilbert space with inner product and
norm written as z -y and |z|. We consider maps f: A — I3, where A C I3, and
f can change distances only slightly. The condition on f may be additive or
multiplicative. More precisely, let € > 0. We say that f is an e-nearisometry if

(1.a) lz—yl-e<|fz—fy|<|z -yl +e
for all =,y € A, and that f is (1 + ¢)-bilipschitz if

(1.b) lz—yl/(A+e) < |fz— fyl < (A +e)lz—yl

for all z,y € A.

The basic question is: how close is f to an actual isometry? For surjective
e-nearisometries f: Iy — I3, Hyers and Ulam [HU] proved in 1945 that there is an
isometry S: I — lg such that |Sz — fz| < 10e for all x € l;. The result was later
extended to all Banach spaces; see [Ge], and the constant 10 has been reduced
to 2; see [0S] and [Se].

Condition (1.a) is very strong for large distances, and the proofs of the results
above make essential use of the behavior of f near the point at infinity.

In this paper, we consider bounded sets A C I3, and the problem is essentially
different. We show in 2.2 that if A € R" is bounded and if f: A — Iz is an
ed(A)-nearisometry with ¢ < 1, then there is an isometry S: R" — > such that

ISz — fz| < enVed(A)

for all z € A. The result can be extended to the case where A lies in a narrow
neighborhood of R™ in ly; the constant ¢ then depends also on the width of this
neighborhood. The proofs are elementary but not short.

We do not know whether the result holds with a constant ¢ independent of n
or whether the result holds for all bounded subsets of I3. On the other hand, the
factor /¢ has the correct order of magnitude. We show in Section 3 that it can
be replaced by ¢ if f: A - R™, A C R", and A is not close to any hyperplane.

For related earlier results, see [Jo], [Va], [Fi] and [Tr].

A (1 + ¢)-bilipschitz map f: A — l is an ed(A)-nearisometry, and hence we
obtain approximation results for bilipschitz maps. In Section 4 we apply the
above results to approximate quasisymmetric maps by similarities.

The results of this paper can be applied to extension problems of bilipschitz
and quasisymmetric maps.
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1.2. NotaTION. We let (ey,es,...) denote the standard basis of ls, and the
euclidean n-space R™ is identified with the linear subspace of I, generated by
€1,...,en. Weset R} = {r € R" : z,, > 0}. The distance between nonempty
sets A, B C I is written as d(A, B). Furthermore, d(A) is the diameter of A, and
aff A is the affine subspace generated by A. For z € I; and k € N we set

1/2
Tk = d(z, RF1) = (fo) .

i>k
Then
k-1
T = E Zi€; + Tr«t,
=1

where e = e(z, k) is a unit vector perpendicular to RF~1.
We let B(z,r) and B(x,r) denote open and closed balls with center z and

radius r, and we abbreviate B(r) = B(0,r) B(r) = B(0,r). If A C I, and
f,g9: A — ls are maps, we write

If = glla=sup|f(z) — g(z)|.
z€A

To simplify notation, we often omit parentheses writing fz = f(z) etc.

1.3. SPECIAL CONVENTION. Given a map f: A — I, we write 2’ = f(z), v/ =
f(y), etc. This convention is only applied if the map is denoted by f.

2. Nearisometries of arbitrary sets

2.1. SUMMARY. In this section we consider e-nearisometries f: A — [, where
A is an arbitrary bounded set in R™. We show in Theorem 2.2 that f can be
approximated by an isometry S: R™ — I3 so that the error term is of the form
cve. A more general result is given in 2.10, where A is allowed to lie in a narrow
neighborhood of R” in [s.

To simplify the proof we assume that A is compact. This is not an essential
restriction; see 2.11.

2.2, THEOREM: Suppose that A C R™ is compact and that f: A — I3 is an
ed(A)-nearisometry with ¢ < 1. Then there is a surjective isometry S: ly — I
such that ||S — flla < c,/ed(A), where ¢, depends only on n. If fA C R"™, we
can choose S so that SR = R”.

The proof of 2.2 will be given in 2.8.
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2.3. COROLLARY: Suppose that f: A — I3 is as in 2.2. Then f has an extension
to a d-nearisometry g: lo — Iy with § = cp\/ed(A).

Proof: Set gz = Sz for x € I3 A, where S is given by 2.2. |

2.4. NORMALIZATION. We say that a finite sequence @ = (aoq,...,ax) in I3 is
normalized if ag = 0 and if a; € R"‘+ for 1 <1 < k. For each a there obviously
is a surjective isometry T I3 — I3 such that Ta = (Tay, ..., Tay) is normalized.
If A C lp is a set containing a finite sequence @ and if f: A — [5 is a map such
that fa is normalized, we say that f is normalized at a.

Given a compact set A C lo, a finite sequence @ = (u(0),...,u(n)) of n +1
points u(j) € A is said to be a maximal n-sequence in A if |u(0) —u(1)| = d(A)
and if for 2 < k < n, the distance d(u(k), aff{u(0),...,u(k — 1)}) is maximal in
A. By compactness, the set A contains a maximal n-sequence for all n € N. If
an n-sequence 4 is normalized and maximal in A, then u(0) = 0, u(1) = d(A)ey,
and u(k) € RE with u(k)x = max{z¢. : £ € A}; see 1.2 for notation.

Ifn € N, AC Iy is compact and f: A — I3 is a map, then there are sur-
jective isometries 17, T5: Iy — I such that T A contains a normalized maximal
n-sequence u and such that the map Ty fTT 1. Ty A - l, is normalized at .

We start by estimating a nearisometry of a set of three points. Recall that we
write 2’ = fz.

2.5. LEMMA: Suppose that A = {0,e1,z} C R? with d(A) = 1. Let ¢ < 1072,
and let f: A — R? be an ¢-nearisometry, normalized at (0,e;). Then

(1) o1 — 24| < 3.03¢,

(@) |2 — 24°| < 6.2¢,

(3) |z2 — x| < 6.2¢/x9 if z2 > 0, 2 > 0.

Proof: The proof makes use of the formula 2a-b = |a|? +|b|2 — |a — b|2. We have

2er — x| = 122 e1 — 2" - ea] < [Jof’ — o' P’| + [lz — eaf” - | - ey

= (lz] + &N =l = 1 ll + (lz — ea] + " — ea]) ||z — ea] — |2’ = en].-

Since |z’| < |z| + € < 1+ ¢, the first term is at most (2 + €)e. To estimate the
second term we write fe; = ae; with |a—1| < € and obtain |z’ —ae;| < |z—e;|+e,
which yields

|z’ —e1] < |2’ —aei| +{a— 1| < |z —er| +26 <1+ 2,
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and similarly |2’ — e1] > |z — e1| — 2¢. Thus
2lz1 — 2| < (2+€)e + (2 + 2€)2¢ = 6¢ + 5e* < 6.05¢,
which gives (1).
To prove (2) we consider two cases.
CASE 1: z; < 1/2. Since 22 = |z|2 — 22 and 2’2 = |2/|> — &'3, and since
€ <1072, we get by (1)
2
|23 — 23] < (&l + [2'Dliz] = &'l + (|za] + |24 )21 — 1]
<(2+¢€)e+(1+3.03)3.03¢ < 5.2.
CASE2: x> 1/2. Now 22 = |z—e1|2—(21—1)% and 2’5 = |z'—ae; |2~ (2] —a)?,
and thus
23 — 23 <(Iz — exl + |2’ = qea]) |z — ex| = |o’ ~ aeen|
+(le1 = 1 + 21 - el)lz1 — 1 - 21 + of
<@2+e)e+ (1/2+ |z =zl + |21 = 1+ 1 = af)(lz1 — 2] + | - 1])
<2.01e + (1 4 3.03e + €)(3.025¢ + ¢€) < 6.2¢,

where we used the estimate |z; — z}| < 3.025¢ from the proof of (1).
Finally, if 22 > 0, z5 > 0, then |z + 25| > x2, and (3) follows from (2). |

2.6. AN INDUCTIVE STATEMENT. Theorem 2.2 will be proved by induction.
For this purpose, let n € N and let S, be the following statement.

Sp: Let A = {0,e1,u(2),...,u(n),z} C Iz be such that the n-sequence % =
(0,e1,u(2),...,u(n)) is normalized and maximal in A. Suppose that f: 4 — Is
is an e-nearisometry with ¢ < 1072, normalized at 4. Then the following three
estimates are true:

(1) If A > 0 and if u(n), > AV/E, then |z, — 2z} | < one/u(n),, where g, = o0,(N).

(ii) If A > 0 and if u(n), > A/, then |x%n+1)* - x’%n+1)*| < Tn€, where
Tn = Tn(A).

(iii) If £ > 0 and if T(p41). < ty/E, then |z — 2| < y,\/€, where 7, = ¥, (2).

The mumbers p,,, 7, and 7, are obtained from the following recursive formulas:

01=3.03, 11=62 mm)2=01+C+V2+62)7?
2ni1(N) = 3.02+ TN VI+ TV/X2 + 3 k(W2 + e:(A)/22),
k=1

Tat1(N) = Ta(A) + 241N 2 + 2ar1(V)/A?),
Yn+1(t) = min{max{y,(A), Bntr1(N, 1)} : A > 0},



66 P. ALESTALO, D. A. TROTSENKO AND J. VAISALA Isr. J. Math.

where
n+1

Brrn(M )2 =01+ (t+ V2 + 10 ()2 + 372D (V)2
k=2
2.7. LEMMA: Statement S,, is true for alln > 1.

Proof: The lemma is proved by induction on n. Since u(0) = 0 and u(1) = ey,
we have d(A) = 1. Hence S;(i) follows from 2.5(1); the condition involving A is
irrelevant. Estimate S (ii) follows from 2.5(2) with the aid of auxiliary rotations
around span(e; ); again the condition with A is irrelevant.

To prove S (iii), suppose that ¢ > 0 and that z3. < ¢1/e. From S;(ii) we get

x5, < /T3, +6.26 < V2 +6.2V/.

Writing = = z1e1 + Za.€, ' = 2e1 + 25,€¢’ as in 1.2 we obtain

[z — 2|2 = |z; — )% + |zose — Thee'|2 < 3.03% - 107 % + (24 + 7h,)?
< 0.1+ (t+ V2 +6.2)%),

which proves S (iii).

Next assume that n > 2 and that Sy is true for 1 < k£ < n — 1. First observe
that the functions g,4+1(A), Th+1(A) and Bpy1(A,t) are decreasing in A and tend
to infinity as A — 0. Moreover, B,,1(}, t) is increasing in ¢ and tends to infinity
as £ = oo. By induction we see that the definition of 4, .1 (t) makes sense, and in
fact, Yn+1(t) = ¥n(An), where A, = An(t) is the unique solution of the equation
Yr(An) = Bn+1(An, t). Moreover, v,(t) is increasing in .

Suppose that A, @ and f are as in S,. Writing hy = u(k)x, b}, = u(k)) we
have 1 > hy > hy > --+ > hq and A}, > 0. To prove S, (i) we assume that A >0
and that h,, > A/e. We have

|Zn — Tplhn < JTphn — $;;h:u| + |zpllhn — h::|

Furthermore, the (n — 1)-sequence (0,eq,u(2),...,u(n — 1)) is normalized and
maximal in A, and hence S, (ii) yields [h2 — A’ ,2,| < Tp_1€- Since hy, > 0 and
h;, 2 0, this implies that

| — B| € Ta—1€/Pn.

Since ZTps < hy, condition S, (ii) also gives

|z)) < zhy € VT2, + a1 < a1+ Ty /A2,



Vol. 125, 2001 ISOMETRIC APPROXIMATION 67

On the other hand,

2Zxku(n)k =2z - u(n) = [z|? + [u(n)]® — |z — u(n)|?.
k=1
This and the corresponding formula for 2z’ - u(n)’ yield

n

Y (@ru() ~ zha(n)i)| < [lzl® = o' | + [fu(m)* - Ju(n)'P|

k=1

2

+ ||z = u(n)]? - |2’ — u(n)'?].
The first term on the right is
(=] + |&'Dlz] = |2']] < 1+ 1+ €)e < 2.01e.

The other terms have the same upper bound, and hence

Z(xku(n)k — zru(n);)| < 3.015¢.
k=1
This implies that
n—1
|enhn — 2hhy| < 3.015 + ) (Jok — al[u(r)] + |zkllu(n)r — u(n)i).
k=1

Since |u(n)r| < hg, condition Si(i) gives

|zx ~ zillu(n)e| < ove,  |u(n)x — u(n)i] < exe/hs,
23] < |zk] + |2k — 2} < Be + ore/hi < hi(1+ 01/2%)

for 1 <k <n-1. Hence

n—1
|Tphn — zhhl,| < 3.015¢ + ¢ Z ok(2 + o/ A2).
k=1
Combining the estimates yields
e n—1
T — 2| < h—(3 02+ a1V T+ Tt /X2 + ) or(2+ 01/2?))
k=1
= 5Qn/hna

and S, (i) is proved.
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We next prove S, (ii). Let again h, > A\/e. We have

2 .2 2 12 _ 12 12
Tint+1)x — Toxw =Ty T (n+l)x = T px — T g

Since hy—1 > hy > AV/E, we can apply S,-1(ii) and obtain

(704130 = @' tnsl < [2he = &0l + |8 = @3] < Tus + (2l + [ len — o).
Here |z,] < hy, and

|Z0] < |Zn| + |20 = 20| < R + 006/hn < hn(1+ 0a/A?).
Hence

2
|$%n+1)* - .'L'I(n+1)*| < (Tn_l + Qn(z + Qn//\z)) € = T,e.

This completes the proof of S, (ii).
To prove Sy (iii) assume that £ > 0 and that z(, 1), < ty/e. Let A > 0. We
consider two cases.

CASE 1:  hy, < A/E. Now . < A\/E, and S,,—1(iii) gives |z — 2| < y,-1(A)V/E.
CASE 2:  h,, > A\/e. Write
n
z= Zxkek + Ty, &= Zx}cek + x'(nﬂ)*e’,
k=1 k=1
as in 1.2. Applying Sk (i) for 1 < k < n and S,(ii) we obtain

|z 2’ = Jo1 - 23/” + Z |z = 24 + [T(ns1)ee = Tinprye' |
k=2

n
3038)2 Z ng/hk) + :L‘(,H_l)* +$(n+1)*)
k=2

<0le+eXY ok + (t+ V2 + 1) = Bu(M 1)’
k

=2

3

Since A > 0 was arbitrary, S, (iii) follows. |

2.8. PROOF OF 2.2. If 1072 < ¢ < 1, we fix a point a € A and choose an
isometry S: R™ — I, with Sa = fa. Since 1 < 10+/¢, we get for each z € A

|Sz — fz| < |St — Sal + {fr — fa| < 2|z — a| + ed(4) < 21/=d(A).

Hence we may assume that ¢ < 102
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Replacing f by the map z — f(d(A)z)/d(A) we may assume that d(4) = 1.
Moreover, we can use auxiliary isometries to normalize the situation so that A
contains a normalized maximal n-sequence @ and that f is normalized at @. The
theorem follows with S = id and ¢, = 7,(0) from the case t = 0 of statement
Sy, (iii) of 2.6. The condition SR™ C R" is clear from the proof. ]

2.9. NUMERICAL ESTIMATES. For ¢ < 1072, Theorem 2.2 is true with ¢; =
2.51, Cy = 873, C3 = 18.8.

We next give a more general version of 2.2 by allowing the set A to lie in a
narrow neighborhood of R™.

2.10. THEOREM: Suppose that n € N, that F is an n-dimensional affine sub-
space of ly, that t > 0, 0 < e < 1, and that A C F + B(t\/ed(A)) is compact.
Let f: A — I3 be an ed(A)-nearisometry. Then there is a surjective isometry
S:ls — 1y such that |8 — flla < 7 {(Cnt)\/ed(A), where the function v, is given
by 2.7, and C,, depends only on n.

Proof: We may again assume that ¢ < 1072 and d(A4) = 1. Choose a maximal
n-sequence & = (u(0),...,u(n)) for A. Let T: I3 — I3 be a surjective isometry
normalized at @. Then T4 lies in R”+ B(C,,t\/€) by Lemma 5.9 in the appendix.
Hence we may assume that A C R"™ + B(C,t/c) and that A has a normalized
maximal n-sequence #. By another auxiliary isometry we may assume that f is
normalized at @. Since z(ny1), < Cpty/e for all z € A, the theorem follows from
S,(iii) of 2.6 with S =id. B

2.11. REMARK. In 2.2 and 2.10, we assumed that A is compact in order that A
contain a maximal sequence. However, the results are true for all bounded sets,
and they are obtained by an elaboration of the proofs above, using approximate
maximal sequences in the natural sense. Alternatively, we can in 2.2 use an
extension of f to the closure A.

Indeed, if A and fA lie in finite-dimensional subspaces, we can extend an
e-nearisometry f: A — Il to an e-nearisometry g: A — Iy by setting gz =
lim; o fx; for z € AN A, where (z;) is an arbitrary sequence in A such that
x; — = and such that the sequence (fz;) converges.

In arbitrary metric spaces X and Y, one can extend an e-nearisometry f: A —
Y, where A C X, to an &'-nearisometry g: A — Y for each ¢/ > ¢ by setting
gz = fyforz € AN A, where y € A is an arbitrary point with |y—zx| < (¢’ —¢)/2.
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2.12. SHARPNESS. We next show that the bound ||S — f||4 < cay/Ed(A) in 2.2
has the correct order of magnitude. Indeed, we show that the theorem is not true
for small € if ¢, < 1/2.

Set A = {0,e1/2,e1} C R. Let 0 < h < 1/2, and define f: A — R? by
f(0) =0, fler) = ey, f(e1/2) = e1/2 + hey. Then f is an e-nearisometry with

€ = h?, since
V1/4+h2 —1/2 < h2.

Assume that S: A — I3 is an isometry, and set @ = ||S — f||a. Then SR is a
line meeting the three balls B(Sx,a), z € A. It follows that a > h/2 = \/z/2.
Consequently, for each 0 < ¢ < 1/4 there is a finite set A C R and an &-
nearisometry f: A — R? such that d(A) = 1 and ||S — f|la > 1/ for every
isometry S: R — 5.

3. Nearisometries of thick sets

3.1. SUMMARY. In this section we consider nearisometries f: A — R”™, where
A is compact in R™ and A is not very close to any hyperplane. We say that such
a set is thick and give the precise definition for the thickness 6(A) of 4 in terms
of projections onto lines. An alternative characterization for thickness in terms
of heights of simplexes is considered in 3.13.

We show that s-nearisometries of thick sets can be approximated by isometries
with error term of the form ce instead of ¢,/e. Compactness can again be replaced
by boundedness; see 2.11.

3.2. THICKNESS. For each unit vector e € S?~! we define the projection
Te: R® - R by mex = x -e. Let A # @ be a bounded set in R™. The thickness
of A is the number

6(A) = inf{d(n.A) : e € S*}.

Alternatively, 6(A) is the infimum of all ¢ > 0 such that A lies between two
parallel hyperplanes F, F' with d(F, F') = t. We have always 0 < 68(A4) < d(A).

3.3. THEOREM: Suppose that 0 < ¢ <1 and that A C R" is a compact set with
8(A) > qd(A). Let f: A — R™ be an e-nearisometry. Then there is an isometry
S: R™ — R™ such that ||S — f|la < cne/q, where ¢, depends only on n.

The proof of 3.3 will be given in 3.7.
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3.4. COROLLARY: Suppose that q and f: A — R"™ are as in 3.3. Then f has an
extension to a §-nearisometry g: R™ — R™ with § = c,e/q.

Proof: Set gx = Sz for x € R™ ™ A, where S is given by 3.3. 1

3.5. AN INDUCTIVE STATEMENT. Theorem 3.3 will be proved by induction on
n. For this purpose, let n > 1 be an integer and let T, be the following statement:
T,: Suppose that A = {0, e1,u(2),...,u(n),z} C Iz is such that the n-sequence
@ = (0,e1,u(2),...,u(n)) is normalized and maximal in A with u(n),, > 0. Let
f: A = I3 be an s-nearisometry with € < 1072 A 4u(n)2, normalized at 4. Then
(i) lzn — 23| < one/u(n)n,
(i) 230 41)0 = T (as 1yl < e
The numbers g, and 7, depend only on n, and they are obtained from the
following recursive formulas:

01=3.03, 7 =62,

n—-1
On =3.024 Tn_1y/T+ o1 +2 3 k(1 + 20x),
k=1

Tn = Tn-1+ 2Qn(1 + 2971)'

3.6. LEMMA: Statement T, is true for all n > 1.

Proof: The case n = 1 follows from 2.5 with auxiliary rotations. Assume that
n > 2 and that T is true for 1 < k <n-—1. Let f: A > [ be as in T,,. Write
hx = u(k)x and hy, = u(k)},. From the maximality and normalization conditions
it follows that

I=hy 2 2hy >0,

and that

(3.a) k] < ke < u(k)ix = hi,  hy, = u(k)f,
for all 1 < k < n. Moreover,

(3.b) € < 4h? < 4h2

foralll <k <n.
To prove T, (i) we first observe that

(3.c) hnlen = 23] < |nhn — 2o + o] 1he — byl
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As in the proof of 2.7, we have {z - u{n) — z’ - u(n)’| < 3.015¢. Since
u(n), u(n)’ € R™, we obtain

n—1

|Enhn — aphy| < |z u(n) — 2’ w(n)| + ) |zsu(n) - chu(n)il
k=1

n—1

<3015+ Y (lzk — zillu(n)l + [okilu(n)k — u(n)i).
k=1

From (3.b) it follows that T} holds for the restrictions of f to the sets
Ar ={0,e1,u(2),...,u(k),z}, Bk ={0,e1,u(2),...,u(k),u(n)}

for all 1 <k <n—1. From T;(i) for f|Ax we get for these k

|z — 25| < oxe/ha,

ok | < |zwl + ok — 23] < hi + oke/he < (1 + 40r)hs,
since € < 4h2 < 4R}

Furthermore, Ty (i) for f|Bjy gives, together with (3.a),
[u(n)k — u(n)i| < oxe/hi.

Since |u(n)g| < hg by the maximality of @, these estimates yield

n—1

(3.d) |Znfin — Tphiy| < 3.0156 +2¢ > 0x(1 + 201).
k=1

Applying T, (ii) to f|A,—1 we obtain

(3.6) |$:1| < |$:1*| < V "E?u: + Tp-1€ < hn\/ 1+ Tn—1;

and T,,—(ii) for f|B,-1 gives

2
|h31 - h,nl < Tn—-1€&

! —
(3f) |hn hnl - hn + h:’l = hn 3

in view of (3.a). Condition T, (i) follows now from the estimates (3.c)—(3.f).
To prove T,(ii) we first observe that

2 2 2
|x%n+1)* - xl(n+1)*| < |.’L‘i* - xln*l + |$31, - xln :

Applying T,,_;(ii) to f|An-1 we get

2
|x121* - x,n*l < Th-1€.
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Furthermore, T, (i) implies that

|zl < [2a] + |20 — 20] < Ba + 0n€/hn < ha(l+ den).
Together with T, (i) and (3.a), this implies that

|22 — 22| < (|2a] + (24 ]) 20 — 5] < (Ao + Ba(l + 40n))0ne/hn
= 20,(1+ 20, )e.

These estimates yield T, (ii). ]

3.7. PrOOF OF THEOREM 3.3. We may assume that d(A) = 1. Choose a
maximal n-sequence @ = (u(0),...,u(n)) in A. Performing auxiliary isometries
we may assume that @ is normalized and that f is normalized at @. Then u(0) =0
and u(1) = e;. Setting hy = u(k)r we have 1 = hy > --- > h,,. Moreover, since
|zp| < by, for all z € A, we have 2h, > 0(A) > q.

If ¢2 < e < 1, we apply 2.2 to get an isometry S with ||S — fljla < cuvE =
cne/VE < ene/q.

If € > 1072, then

|z — 2’| < |z| +|2'| <2+¢€ < 201e < 201¢/q,

and hence S = id is the desired approximation of f.

Finally, let ¢ <1072 A g% Thene < ¢ <4hZ forall 1 <k < n.

We show that S = id is the desired isometric approximation of f. Let = € A.
For 1 <k < n, we can apply condition Ty(i) of 3.5 to f|{0,e1,u(2),...,u(k),z}
and obtain

lzx — 2| < ore/hr < 20xe/q.

Consequently,
n n
o =/ = Y ok — akl? < 4e%72 Y o,
k=1 k=1
which gives |z — 2| < cpe/q with 2 =43 p_ o2 n

3.8. NUMERICAL ESTIMATES. For ¢ < ¢? A 1072, Theorem 3.3 is true with
¢1 = 6.06, co = 126, c3 = 4 - 105.

3.9. SHARPNESS. We show that the bound ||S — f|l4 < cne/q has the correct
order of magnitude as a function of ¢. For 0 < ¢ < 1/2 let A be the set {0,u,e;},
where u = e1/2 + gez. Then 6(A) = ¢ and d(A) = 1. For 0 < h < ¢/3 define
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amap f: A — R? by f(0) = 0, f(e1) = e1, f(u) = u+ hep. Then f is an
e-nearisometry with £ = 7gh/3, since

V/4+(g+h)?2—/1/4+¢2 <2gh+h? <2gh+qh/3 =¢.

If §: R? — R? is an isometry with ||S— f||4 < «, then ¢+h—20c < g, and hence
a > h/2 > £/6q. Consequently, for every 0 < ¢ < 1/2 and 0 < ¢ < 7¢%/9 there is
a set A C R? and an e-nearisometry f: A — R? such that §(4) = ¢, d(4) = 1,
and ||S — f|la > ¢/6q for every isometry S: R* — R2.

3.10. JouN’s METHOD. The proofs of 2.2 and 3.3 were, unfortunately, techni-
cally complicated. On the other hand, F. John [Jo] has given an elegant proof
for isometric approximation of locally (1+ ¢)-bilipschitz maps f: G — R™, where
the domain G C R™ belongs to a class later called John domains. For example,
G may be a convex domain with B(zg,r) C G C B(zo, cr) with a given ¢ > 1.

We next show that John’s ideas can be applied to approximate a nearisometry
f: A — R" provided that the set A C R™ possesses “enough orthogonality”.
The proof is based on the following fact; see [BL, page 349].

3.11. LEMMA: If A: R" — R" is a linear map such that |Ae; - Ae; —e; -e;| <t
for all i and j, then there is a linear orthogonal map T such that |A — T| < nt,
where | - | is the operator norm.

3.12. THEOREM: Suppose that n > 2, that A C B™(xo, R), and that A contains
points To, To+TU1,. .., Lo+ Ty, where 0 < v < R, and the vectors uy, ..., u, are
orthonormal. Let f: A — R™ be an e-nearisometry. Then there is an isometry
S: A — R™ such that Sz = fzo and ||S — f|la < 10n%/2Re/r.

Proof: We may normalize the situation so that zg =0 = fxo, r =1, u; = ¢;. If
€ > 1/4, we can choose S = id, since

|z — fz| < |z|+ |fz] £ 2R+ € < 9Re

for all z € A. Assume that ¢ < 1/4. Applying again the basic formula 2a - b =
la|? + [B]® — |a — b|? we get for all z,y € A

2|/fz- fy—=z -yl < (lz| + [fz))e + (lyl + [fyDe + (lz —y| + | fz — fyl)e
< 2lzl +1/4)e + 2ly| + 1/4)e + 2|z — y| + 1/4)e,

and hence

(3.g) [fr- fy—z-y| < (Jo] + [yl + |z — y] + 3/8)e.
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Let L: R® — R™ be the linear map with Le; = fe;, 1 < i < n. Then (3.g)
implies that

|Le; - Lej — e; - ej| < (1+ 1+ V2 +3/8)e < 3.8.

By 3.11, there is an orthogonal map T: R™ — R" with |T — L| < 3.8ne. By (3.g)
we get

[(fr —Tzx) Te) < |fz| |Tei — Les| + |fz - fes — - &
<38ns(R+1/4)+ (R+1+ R+1+3/8)e <9.2nRe

for all z € A and 1 < i < n. Since the vectors Te; are orthonormal, this implies
|fz — Tz| < 9.2n%2Re. |

3.13. SIMPLICIAL THICKNESS. Let A be a k-simplex in I3, and let A® be the
set of vertices of A. We let b(A) denote the smallest height of A, that is, the
smallest distance between a vertex of A and the affine subspace spanned by the
opposite face.

For a bounded set @ # A C R"”, the number

0s(A) = sup{b(A) : A is an n-simplex, A® C A}

is the simplicial thickness of A. A localized version of this concept has been
used in [V&] and [VVW].

It is rather obvious that the numbers 8(A) and 65{A) cannot be too different
from each other, and in the next result we show that the ratio 85(A)/6(A) lies
between two positive bounds. It is perhaps not so obvious that the upper bound
must depend on the dimension n, but if A is a regular unit n-simplex, then

6s(A) > 1/v/2 while 8(A) is roughly /2/n.
3.14. THEOREM: If A # @ is a bounded set in R™, then

0(A4)/2 < 05(A) < (n+1)8(A)/2.

Proof: We may assume that A is compact. Choose an n-simplex A with A% ¢ A
such that the volume of A is maximal. Write b(A) = d(v, E) where v is a vertex
of A and FE is the affine subspace spanned by the opposite face. Now A lies in
E + B(b(A)), since otherwise we could find a simplex with larger volume. This
proves the first inequality.

The second inequality follows from Theorem 5.3 in the appendix. For an even
n we have a better estimate 65(A) < nf(A)/2. |
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4. Quasisymmetric and nearsymmetric maps

In this section we consider the approximation of maps by similarities instead of
isometries.

4.1. QUASISYMMETRY. We first recall the concept of a quasisymmetric map.
In this section, we let X and Y denote metric spaces, and the distance between
points a and b in each space is written as la — b|. A proper triple in X is a
triple T' = (z;y, z) of points in X such that y # = # z. The ratio of a proper
triple T' = (z;y, 2) is the number

7| = lz -y
|z - 2]
An injective map f: X — Y maps each proper triple T = (z;y,2) in X to the
proper triple
T’ = fT = (f=z; fy, f2)
inY.

Let 7: [0, oo[— [0, 0o be a homeomorphism. An injective map f: X — Y is n-
quasisymmetric if |T7| < 5(|T'}) for every proper triple T in X. For 0 < s < 1,
amap f: X — Y is s-quasisymmetric if f is n-quasisymmetric for some 7 and
if |T'| < |T| + s for all proper triples in X with |T'| < 1/s. For s = 0, this means
that |T'| = |T| for all T, and f is a similarity.

4.2. NEARSYMMETRY. Let 0 < s < 1. We say that an injectivemap f: X - Y
is s-nearsymmetric if |T’| < |T|+s for all proper triples T in X with |T'| < 1/s.
An s-quasisymmetric map is trivially s-nearsymmetric, but an s-nearsymmetric
map need not be n-quasisymmetric for any 1. However, this is the case if the
space X has suitable connectedness properties; see [TV, 3.10] and [V4, 2.3].

We show that suitably normalized nearsymmetric maps are nearisometries,
and we apply this fact to prove that nearsymmetric (and hence quasisymmetric)
maps can be approximated by similarities.

4.3. LEMMA: Suppose that f: X — Y is s-nearsymmetric and that T is a proper
triple in X with |T| < r where r > 1. Then

T'| > |T| - r%s.

Proof: We may assume that s > 0. Let T = (z;y,2). Then U = (z;2,y)
is a proper triple. If |T| < rs, the lemma holds trivially. If |T| > rs, then
|U] =T~ < (rs)~! < s71, and hence

T\ = U | <|U|+s=|T|" +s.
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This implies that |T] > |T| — s’ where

s = ———l <|T|%s < rls. 1

4.4. THEOREM: Suppose that 0 < s < 1/2 and that f: X — Y Is s-near-
symmetric. Suppose also that there are points a,b € X with |a —b| =1 = d(X)
and |fa — fb| = 1. Then f is a 6s-nearisometry.

Proof: Let z,y € A, z # y. Since |z — a| + |z — b] > |a — b] = 1, we may assume
that |z —a| > 1/2. Then Ty = (x;y, a) and T3 = (a; z, b) are proper triples in X,
and

Iz —yl=T||Tel, |fz - fyl=ITi|T3), | <2, |Tl <L

Since s < 1/2, it follows from the nearsymmetry of f that
|fe = fyl = IT{IT3} < (ITa| + s)(IT2] + 5)
=lz -yl +|T|s + |Tals + 52
< |z —y|+4s.
Since |T1| < 2 and |T3| < 1, Lemma 4.3 gives
\T11 > |T1] - 4s, |T3] > |T2| - s.
Here |T,| = |z — a| > 1/2 > s, and hence

|fz = fyl = T1IIT3] 2 (IT1] - 45)(| T2l - s)
= |z — y| - 4s|z — a| - s|z — y|/|z — a| + 45® > |z - y| — 6s.

Hence f is a 6s-nearisometry. 1

4.5. THEOREM: Suppose that A C R" is compact and that f: A — l; Is s-
nearsymmetric with s < 1/2.Then there is a surjective similarity S: l3 — ly such
that ||S o f —id||a < cpy/sd(A), where ¢,, depends only onn. If fA C R™, we
can choose S so that SR™ = R™,

Proof:  Choose points a,b € A with |a — b] = d(A) and set A9 = A/d(A),
M = |fa — fb|. The map g: Ag — la, defined by gz = f(d(A)z)/M, is s-near-
symmetric. From Theorem 4.4 it follows that g is a 6s-nearisometry. By Theorem
2.2, there is a surjective isometry So: Iy — Iy such that ||So — gl 4, < c,vV6sd(A).
Setting Sz = d(A)S; !(x/M) we obtain a surjective similarity S: I, — I, with
ISo f—id|la < enVBsd(A). ]

Similarly, Theorems 3.3 and 4.4 give the following result:



78 P. ALESTALO, D. A. TROTSENKO AND J. VAISALA Isr. J. Math.

4.6. THEOREM: Suppose that 0 < ¢ <1 and that A C R" is a compact set with
6(A) > qd(A). Let f: A — R"™ be s-nearsymmetric with s < 1/2. Then there is
a similarity S: R™ — R"™ such that ||So f —id || 4 < cpsd(A)/q, where c,, depends
only on n.

5. Appendix: Simplexes

In this appendix we prove some elementary results on simplexes, needed in the
proofs of 2.10 and 3.14. However, they are not needed in the proofs of the main
results 2.2 and 3.3.

5.1. LEMMA: Suppose that A C R” is an n-simplex with vertices ay,...,ap,
bo, . .., by, where a; € R""! and bj € R*" ! +e,. Set

E = aff{ao,...,ap,}, F =aff{by,...,bg}.
Then EN (F —ey,) # .

Proof: We may assume that ap = 0. Set y =bp—e, and k; =bj—bo, 1 < j < q.
Then
E = span{ay,...,ap}, F =bo+span{ky,..., kq}.

Since A is an n-simplex, the vectors ay,...,ap,by,...,by form a basis of R".
Hence we can write
Yy = 8101 + -+ Spap + tobo + - - - + tgbg
=31(1,1+“'+Spap+(to+"'+tq)b0+t1k1+‘..+tqkq.

Since the vectors y, a;, k; lie in R*~! while by ¢ R™~!, this implies

$101 4+ Spap =y — tiky — - —tgkg € EN(F —ey). ]

We recall some notation from Section 3. For e € S”~1, the projection me: R™ —
R is defined by 7.z = z - e. The thickness of a bounded set A C R" is 6(A) =
min d(m.A) over e € S*~1. The smallest height of a simplex A is b(A), and A°
is the set of vertices of A.

5.2. LEMMA: Let A C R" be an n-simplex, and let z € S*~! be such that
d(n,A) = 6(A). Then 7,A is an interval [a,b] such that m,A° = {a,b}.

Proof: Assume that the lemma is false. Then A has a vertex v such that v
is an interior point of the interval J = m,A. Let A; be the (n — 1)-face of A
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opposite to v. Then J = 7,A1. There is 6 > 0 such that 7,A; = 7. A whenever
e € 8" ! and |e — z| < §. We may assume that 0 € E = aff A;. We can write
z = ej cosa + egsin e, where 0 < o < 7/2, and ey, e; are unit vectors such that
e1 € Eand ey L E. For 0 < ¢ < /2, we set e, = e;cosg + egsing and
g(p) = d(me,Ar). Then g(p) = g(0)cosp, and hence g is strictly decreasing.
Choosing ¢ € o, 7/2] with |e, — eq| < & we have g(e,) < g(en) = g(z), and
hence d(m,A) is not minimal. 1

5.3. THEOREM: Let A C R"™ be an n-simplex. Then b(A) < (n + 1)8(A)/2.
Ifn is even, then b(A) < nf(A)/2.

Proof: Write n =2k — 1 if n is odd and n = 2k if n is even.

We may assume that §(A) = 1. Choose a vector z € S*~! such that d(7,A) =
6(A). We may assume that z = e, and that 0 < z,, <1 for all z € A. We must
show that b(A) < k.

By 5.2 we have A C R*~1U(R"! +e,). Write A® = {aq,...,ap,bo, ..., b4}
where a; € R"!, bj € R"! +e,. Then p+gq =n — 1. We may assume that
p<gq,and hence p< k—1. If p=0, then b(A) < d(ag, R~ +¢,) = 1. Assume
that p > 1. Set

E = aff{ao,...,a,}, F =aff{by,...,bq}.

By 5.1 there is a point zg € EN(F — e,). Since zy € E, we can write

14 14
Tp = Ztiai, where Zti =1.
=0 =0

We may assume that g > 1/{p+ 1). Set

1 14
a= t;a;.
1‘%; iQs

Then a € aff{ay,...,ap} and ¢ = (1 — tg)a + teao.
Let T be the affine (n — 1)-space spanned by the face of A opposite to ag.
Thena € T and zo + e, € F CT. Hence y € T where

y=a+ (zo+ e, —a)/to = ag + en/to.
Consequently,

b(A) < d(ag,T) <lag—y|=1/to <p+1<k. &
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5.4. REMARK. One can show that the bounds in 5.3 are sharp. In the rest of
the appendix, we do not try to get best possible estimates.

We fix an integer n > 2 and let o(A) denote the (n — 1)-dimensional volume
of an (n — 1)-simplex A.

5.5. LEMMA: Let J C R” be a closed n-interval with edges ty,...,t,, where
tj > tn for all j. Let A C J be an (n — 1)-simplex. Then

U(A) <ceplyoln-1,

where ¢,, depends only on n.

Proof: Assume first that J is a cube with t; = ¢, for all j. Since A lies in
a ball B of radius t,/n/2, we have o(A) < o(A;), where A; is the regular
(n — 1)-simplex inscribed to B. Hence o(A) < ¢ tn~! with

_a(n-1)n*!
€n = (2n — 2)(-1)/2

where a(n — 1) is the volume of the unit (n — 1)-simplex.
In the general case let f: R® — R"™ be the linear map

fx = (tlwl/tﬂﬂ ceey tn*lwn—l/tny xn))

and let Q be the cube [0,t,]". Then fQ = J. For any (n — 1)-simplex A C R"
we have o(fA) < t;---tp_10(A)/th~1. Since f~1A C Q, the special case gives
o(f~1A) < cat?1, and the lemma follows. |

5.6. NOTATION. Let A C I3 be an n-simplex, and let @ = (u(0),...,u(n)) be
a maximal n-sequence in A in the sense of 2.4. Then the points u(j) are the
vertices of A. As before, we set

h.’i = d(u(j),aﬁ{u(O), ceu(g - 1)})1 1<j<n

The sequence @ and the numbers h; are not uniquely determined by A. The
volume of A is

(5.8) m(A) = hy -+ h /ml.
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5.7. THEOREM: Let A C Iy be an n-simplex with maximal n-sequence 4. Then
hyn < dpb(A), where d,, depends only on n.

Proof: We may assume that @ is normalized, that is, u(0) = 0 and u(j) € Rj+
for 1 < j <n. Then A C R™. Moreover, A lies in the n-interval

J =0, h1] X [=hg, ho] x -+« X [=hp_1, hn_1] X [0, hy].
Let A be an (n — 1)-face of A with 6(A) maximal. Then
m(A) = a(A)b(A)/n.
Furthermore, since A C J and since hy > --- > hy,, Lemma 5.5 gives
a(A) < 2" 2%c hy - hy_y.
By (5.a) we obtain h,, < d,b(A) with d, = 2" 2(n — 1)Ic,,. |

5.8. REMARK. The well-known formula

b VR
(k) = 7

yields the explicit expression d,, = n(?*~1/2(n — 1)(1=%)/2 /2 which is not the
best possible constant.

The following result was needed in 2.10.

5.9. LEMMA: Suppose that F is an n-dimensional affine subspace of ly, that
t >0, that A is a compact subset of F + B(t), and that @ = (u(0),...,u(n)) is a
maximal n-sequence in A. Let T: l; — Iy be an isometry, normalized at 4. Then
TA C R™ + B(C,t), where C,, depends only on n.

Proof: Let x € A. We may assume that Tz € R**1 N R". Let A ¢ R**t! be
the (n + 1)-simplex with vertices Tu(0),...,Tu(n),Tz. Let P: [, - R™*! be
the orthogonal projection, and set F; = PTF. Then A C F; + B(t), and hence
6(A) < 2t. The lemma follows from 5.3 and 5.7 with Cy, = (n + 2)dy,41- |



82

[Jo]
[08]
[Se]

(Tx]

(Vi)

[VVW]

P. ALESTALO, D. A. TROTSENKO AND J. VAISALA Isr. J. Math.

References

Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis I,
American Mathematical Society Colloquium Publications 48 (2000).

D. H. Hyers and S. M. Ulam, On approximate isometries, Bulletin of the
American Mathematical Society 51 (1945), 288-292.

J. Fickett, Approximate isometries on bounded sets with an application to
measure theory, Studia Mathematica 72 (1982), 37-46.

J. Gevirtz, Stability of isometries on Banach spaces, Proceedings of the
American Mathematical Society 89 (1983), 633-636.

F. John, Rotation and strain, Communications on Pure and Applied
Mathematics 14 (1961), 391-413.

M. Omladi¢ and P. Semrl, On nonlinear perturbations of isometries,
Mathematische Annalen 303 (1995), 617-628.

P. Semrl, Hyers-Ulam stability of isometries, Houston Journal of Mathematics
24 (1998), 699-706.

D. A. Trotsenko, Approximation of maps of bounded distortion by similarities,
Sibirskii Matematicheskii Zhurnal 27 (1986), 196-205 (Russian).

P. Tukia and J. Viisild, Quasisymmetric embeddings of metric spaces, Annales
Academiae Scientiarum Fennicae. Mathematica 5 (1980), 97-114.

J. Vaiisala, Bilipschitz and quasisymmetric extension properties, Annales
Academiae Scientiarum Fennicae. Mathematica 11 (1986), 239-274.

J. Viisala, M. Vuorinen and H. Wallin, Thick sets and quasisymmetric maps,
Nagoya Mathematical Journal 135 (1994), 121-148.



