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ABSTRACT 

Suppose t h a t  A C R n is a bounded  set of d i amete r  1 and  t h a t  f :  A -~ 12 

is a map  sat is fying the  near i somet ry  condi t ion i x - Yl - E <_ ]J:x - fY l  <- 

i x - y l T c  wi th  c < 1. Then  there  is an i sometry  S: A - ~  12 such t h a t  

ISx - f x l  <_ Cnv~ for all x in A. If  A satisfies a th ickness  condi t ion and  

if f :  A --+ R n, t hen  there  is an i sometry  S: R n -+ R n wi th  ISx - f x  I <_ 

Cn~/q, where q is a th ickness  pa ramete r .  
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1. I n t r o d u c t i o n  

1.1. Let l~ be the standard separable Hilbert space with inner product and 

norm written as x-  y and Ix[. We consider maps f :  A ~ 12, where A C 12, and 

] can change distances only slightly. The condition on f may be additive or 

multiplicative. More precisely, let ~ _~ 0. We say that f is an c - n e a r i s o m e t r y  if 

(1 .a)  Ix - yl - -< I f x  - f y l  -< Ix - yl + c 

for all x, y E A, and that f is (1 + E)-bil ipschitz if 

(1.b) I x -  y l / ( l + e )  < I f x -  fYl <- (1 + e ) l x -  Yl 

for all x, y E A. 

The basic question is: how close is f to an actual isometry? For surjective 

e-nearisometries f :  12 -+ 12, Hyers and Ulam [HU] proved in 1945 that there is an 

isometry S: 12 -+ 12 such that  [Sx - f x  I <_ 10e for all x E 12. The result was later 

extended to all Banach spaces; see [Ge], and the constant 10 has been reduced 

to  2; see  [ O i l  a n d  

Condition (1.a) is very strong for large distances, and the proofs of the results 

above make essential use of the behavior of f near the point at infinity. 

In this paper, we consider bounded sets A C l~, and the problem is essentially 

different. We show in 2.2 that  if A C R "  is bounded and if f :  A -~ 12 is an 

~d(A)-nearisometry with ¢ < 1, then there is an isometry S: R ~ -+ 12 such that  

ISx - <- c v d(A) 

for all x E A. The result can be extended to the case where A lies in a narrow 

neighborhood of R n in 12; the constant c then depends also on the width of this 

neighborhood. The proofs are elementary but not short. 

We do not know whether the result holds with a constant c independent of n 

or whether the result holds for all bounded subsets of l:. On the other hand, the 

factor x/~ has the correct order of magnitude. We show in Section 3 that  it can 

be replaced by ¢ if f :  A -+ R ~, A C R ~, and A is not close to any hyperplane. 

For related earlier results, see [Jo], [V~i], [Fi] and [Tr]. 

A (1 + e)-bilipschitz map ] :  A -+ l: is an Cd(A)-nearisometry, and hence we 

obtain approximation results for bitipschitz maps. In Section 4 we apply the 

above results to approximate quasisymmetric maps by similarities. 

The results of this paper can be applied to extension problems of bilipschitz 

and quasisymmetric maps. 
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1.2. NOTATION. We let ( e l , e2 , . . . )  denote the s tandard  basis o f /2 ,  and the 

euclidean n-space R n is identified with the linear subspace of 12 generated by 

e l , . . . , e n .  We set R~_ = {x E R n : x,~ > 0}. The distance between nonempty  

sets A, B C 12 is wri t ten as d(A, B).  Furthermore,  d(A) is the diameter  of  A, and 

aft A is the affine subspace generated by A. For x C 12 and k C N we set 

xk, =  (x,a k-l) -- Z 
i>k 

Then  
k-1  

3: ---- Z z i e i  d- Xk.e~ 

where e = e(x, k) is a unit  vector perpendicular  to R k-1. 

We let B(x,  r) and /~(x, r) denote open and closed balls with center x and 

radius r, and we abbreviate  B(r)  = B(0, r) /~(r) = /~(0, r). If  m C 12 and 

f ,  g: A --+ 12 are maps, we write 

[[f - gilA = sup If(x)  - g(x)l. 
xEA 

To simplify notat ion,  we often omit  parentheses writing f x  = f ( x )  etc. 

1.3. SPECIAL CONVENTION. Given a map f :  A --+ 12, we write x t = f (x ) ,  y~ = 

f (y ) ,  etc. This convention is only applied if the map is denoted by f .  

2. Nearisometr ies  of  arbitrary sets 

2.1. SUMMARY. In  this section we consider ¢-nearisometries f :  A - + / 2 ,  where 

A is an arbi t rary  bounded set in R ~. We show in Theorem 2.2 tha t  f can be 

approximated  by an isometry S: R '~ ~ /2 SO tha t  the error term is of the form 

Cv~. A more general result is given in 2.10, where A is allowed to lie in a narrow 

neighborhood of R n in 12. 

To simplify the proof  we assume tha t  A is compact .  This is not  an essential 

restriction; see 2.11. 

2.2. THEOREM: Suppose that A C R n is compact and that f: A -~ 12 is an 

ed(A)-nearisometry with e <_ 1. Then there is a surjective isometry S: 12 -+ 12 

snch that IIS - f]IA ~- Cnv~d(A), where c,, depends only on n. I f  f A  C R n, we 

can choose S so that S R  '~ = R'*. 

The proof  of  2.2 will be given in 2.8. 
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2.3. COROLLARY: Suppose that f: A -+ 12 is a8 in 2.2. Then f has an extension 

to a 5-nearisometry g: 12 -+ 12 with 5 = Cnv~d(A). 

Proo~ Set gx = Sx  for x • 12 \ A, where S is given by 2.2. | 

2.4. NORMALIZATION. We say tha t  a finite sequence a = ( a 0 , . . . ,  ak) in /2 is 

n o r m a l i z e d  if a0 = 0 and if ai E R~. for 1 < i < k. For each ~ there  obviously 

is a surjective i sometry  T: 12 - 4 / 2  such t ha t  T~  = (Tao , . . . ,  Tak) is normalized.  

I f  A c 12 is a set containing a finite sequence ~ and if f :  A --+ 12 is a m a p  such 

tha t  f ~  is normalized,  we say tha t  f is n o r m a l i z e d  a t  a. 

Given a compac t  set A C 12, a finite sequence fi = ( u ( 0 ) , . . . , u ( n ) )  of n + 1 

points  u(j)  E A is said to be a m a x i m a l  n - s e q u e n c e  in A if l u ( 0 ) -  u(1)l = d(A) 

and if for 2 < k < n, the dis tance d(u(k), a f t { u ( 0 ) , . . . ,  u(k - 1)}) is max ima l  in 

A. By compactness ,  the set  A contains a max ima l  n-sequence for all n E N .  I f  

an n-sequence fi is normalized and max ima l  in A, then  u(0) = 0, u(1) = d(A)el,  

and u(k) • R ~  with u(k)k = max{xk .  : x  • A}; see 1.2 for notat ion.  

I f  n • N ,  A c 12 is compac t  and f :  A --+ 12 is a map ,  then  there  are sur- 

jective isometries T1, T2:12 --+ 12 such tha t  TIA contains a normalized max ima l  

n-sequence fi and such t ha t  the m a p  T2fT11: T1A --~ 12 is normalized at  ft. 

We s ta r t  by es t imat ing  a near i sometry  of a set of three points.  Recall t ha t  we 

write x' = f x .  

2.5. LEMMA: Suppose that A = {0, e l , x }  C R 2 with d(A) = 1. Let e <_ 10 -2 ,  

and let f: A --+ R 2 be an ~-nearisometry, normalized at (0, el). Then 

(1) IXl - x~[ <_ 3.03z, 

(2)  - < 6.2 , 

(3) Ix2 - x~l < 6.2¢/x2 if  x2 > O, xt2 > O. 

Proof'. The  proof  makes  use of  the formula 2a -b  = la] 2 A-Ibl 2 - la - bl 2. We have 

21Xl - x~l = [ 2 x - e l  - 2 x ' .  eli _< [Ixl 2 - lx '121 + IIx - e l l  2 - I x ' -  e1121 

- -  (Ixl  + Ix ' l ) I l x l  - tx'l l  + ( i x  - e l l  + Ix' - e l l ) I I x  - ell  - Ix' - el i l .  

Since ]x'[ < Ix] + ¢ < 1 + ¢, the first t e rm  is a t  most  (2 + ¢)e. To es t imate  the 

second t e rm  we write re1 = a e l  with [ a - 1 ]  < e and obta in  ] x ' - a e l l  < Ix-exl+z, 
which yields 

I x ' -  ell  < I x ' -  ael [  + [ a -  1[ < I x -  el l  + 2e < 1 + 2e, 
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and similarly i x '  - eli _> i x - ell - 2c. Thus 

2[xl - x~i _< (2 + e)e + (2 + 2c)2~ = 6~ + 5~ 2 _< 6.05e, 

which gives (1). 

To prove (2) we consider two cases. 

t2 t2 CASE 1: x l  _ < 1/2. Since x 2 = ixi 2 - x 2 and x 2 = ix'i 2 - x l ,  and since 

e _< 10 -2,  we get by (1) 

ix~ - x'~i < (Ixq + ix'l)it~l - ix'li + (Ixll  + ix~ i ) i~ l  - ~[ 
< (2 + ~)e + (1 + 3.03e) • 3.03e _< 5.2e. 

CASE 2: x~ >_ 1 /2 .  N o w x ~  = I x - ~ i ~ - ( x ~ - l )  2 a n d x  ~ = 

and thus 

ix~ - x'~i  -<(i x -  e l i  + I x ' -  a e ~ l ) i i  x -  e l i  - i x ' -  ~e~ i l  

+ ( ix~ - II + Ix~ - ~ i ) l x ~  - 1 - x~ + ~ i  

_<(2 + e)e + (1/2 + Ix] - xll  + ix1 - 11 + 81 - o~])(lXl - -  X]I + 00~ - -  1]) 

_<2.01e + (1 + 3.03e + e)(3.025e + e) _< 6.2e, 

where we used the est imate  ix1 - x]] _< 3.025E from the proof  of (1). 
X t Finally, if x2 > 0, x~ _> 0, then ix2 + 21 -> x2, and (3) follows from (2). i 

2.6. AN INDUCTIVE STATEMENT. Theorem 2.2 will be proved by induction. 

For this purpose,  let n E N and let S,~ be the following s ta tement .  

S~: Let  A = {0, el ,  u ( 2 ) , . . . ,  u(n) ,  x} c 12 be such tha t  the n-sequence ~ = 

(0, el ,  u ( 2 ) , . . . ,  u(n)) is normalized and maximal  in A. Suppose tha t  f :  A --+ 12 

is an e-near isometry with e _< 10 -5, normalized at ft. Then  the following three 

est imates are true: 

(i) IfA > 0 and i fu (n )n  > Ax/ff, then i xn -x~ l  -< One/U(n)n , where ~o~ = ~o~(A). 

(ii) If A > 0 and if u(n)n > Av/~, then 2 _ x , 2  ]x(,~+l). (,~+1).] -< T,~S, where 

(iii) If t > 0 and if x(,~+l), _< tvff,  then [x - x '  I _< ~' ,v ~,  where 9', = "y,(t). 

The  numbers ~o,, T,~ and ~', are obtained from the following recursive formulas: 

e 1 : 3 . 0 3 ,  T1----6-2, "yx(t) 2 - - 0 . 1 + ( t + ~ ) 2 ,  
n 

Q,+I(A) = 3.02 + v,(A) V/1 + T,(A)/A 2 + E Qk(A)(2 + Qk(A)/A2), 
k=l 

~+~(~) : ~.(~) + ~ . + ~ ( ~ ) ( 2  + ~+~(~)/~), 

%+1(t )  = min{max{'yn(A),~n+l(A,t)}  : A > 0}, 
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where 
n4-1 

~,,+~(~,t) ~ = o.1 + (t + Vt~ + ~+1(~11~ + ~-~ ~ o~(~12. 
k = 2  

2.7. LEMMA: S ta temen t  Sn is true for all n > 1. 

Proob The lemma is proved by induction on n. Since u(0) = 0 and u(1) = el, 

we have d(A)  = 1. Hence S,(i) follows from 2.5(1); the condition involving A is 

irrelevant. Estimate S1 (ii) follows from 2.5(2) with the aid of auxiliary rotations 
around span(el); again the condition with A is irrelevant. 

To prove Sl(iii), suppose that  t >_ 0 and that x2, < tv~. From Sl(ii) we get 

' < + < 7 0  + 6 .2 ,z .  : 62 .  _ . - -  

Writing x = x l e l  + x2,e ,  x '  = xllel + x 1 2 , e  ' a s  in 1.2 we obtain 

I x -  x'l ~ Ix, - x~l' + Ix2,e - ' ,2  = x2 ,e  < 3.032. 10-2e + (x2, + x~,) 2 

< (0.1 + (t + V / ~ +  6.2)2)e, 

which proves $1 (iii). 
Next assume that n > 2 and that  Sk is true for 1 < k < n - 1. First observe 

that  the functions Qn+I(A), Tn+I(A) and/~n+l(A, t) are decreasing in A and tend 
to infinity as A --+ 0. Moreover, fln+l(A, t) is increasing in t and tends to infinity 

as t --+ oo. By induction we see that  the definition of %~+1(t) makes sense, and in 
fact, %+~(t) = 7n(An), where An = An(t) is the unique solution of the equation 

%(An) =/~n+l(A~, t). Moreover, %~(t) is increasing in t. 

Suppose that  A, fi and f are as in Sn. Writing hk = u(k)t~, h~ = u(k)~k we 

have 1 _> hi > h2 > . . .  _> hn and h~ _> 0. To prove Sn(i) we assume that  A > 0 

and that  hn >__ Av~. We have 

Ix,., - x "  lhn < Ixnhn - x "  h" [ + [x'llhn - h'~[. 

Furthermore, the (n - 1)-sequence (0, el, u (2 ) , . . . ,  u ( n -  1)) is normalized and 

maximal in A, and hence Sn-l(ii) yields [h2n - h'2,1 < rn- lc .  Since hn > 0 and 

h" > 0, this implies that  

Ihn - h'.l < r n - l c / h n .  

Since x , ,  < h , ,  condition Sn_l(ii) also gives 

I~'1 - ~n,' -< ~ / ~ 2  + r n - ~  _< h.V1 + rn-xl~ 2. 
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On the other hand, 

n 

2 ~ ~k~,(n)~ -- 2x.  u(n) = Izl 2 + lu (n) [  2 - Ix - u ( n ) l  2. 
k=l 

This and the corresponding formula for 2x' .  u(n)' yield 

2 n _ x k u ( n ) k )  ~-~(xku(n)k  ' ' <_ Ilxl 2 -  Ix'121 + Ilu(n)l 2 -  lu(n)'l~l 
k=l 

+ I Ix  - u ( n ) l  = - I x '  - u ( n ) ' l ~ l  • 

The first term on the right is 

(Ixl + Ix' l ) l lx l -  Ix'll _< (1 + 1 + e)e < 2.01e. 

The other terms have the same upper bound, and hence 

E ( X k U ( n ) k  -- XtkU(n)~k) < 3.015~. 
k=l 

This implies that 

n--1 
I x . h .  - x ~ h ~ l  <_ 3.015c -4- ~ ~ ( I x k  - x ' k l lu (n)k l  -4- Ix'kllu(n)k - u(n)~l). 

k = l  

Since lu(n)k[  < hk ,  condition S~(i) gives 

Ixk - xZIlu(n)kl _< ~ke, lu(n)k -- u(n)'kl <_ ekC/hk,  

IXLI _< Ixkl + Ixk -- X'kl <_ hk + pk~/hk < hk(1 + Qk/A 2) 

for l < k < n - l .  Hence 

n--1 
I x . h .  - x~h~l < 3.o15e + c ~ ~k(2 + ok/,x2). 

k = l  

Combining the estimates yields 

n--1 
C 

I x . -  z~l < ~--~ (3.02 + T._I V/1 n t- "r._l/)t 2 + E Ok(2 + 0k/~2)) 
k=l 

= c Q . / h . ,  

and S.(i) is proved. 

67 
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We next prove Sn(ii). Let again hn >_ Av/~. We have 

3 : ( 2 + , ) ,  2 2 /2  ---- X / 2  r2 
-~ X n ,  - -  Xn~  X ( n - b ' ) *  n *  - -  X n "  

Since h~- i  > hn _> AV~, we can apply Sn_,(ii) and obtain 

I x ( \ + , ) ,  - x ' ~ + l ) . l  _< Ix~,  - x'2,,, I + Ix~ - x'2,.,I _< ~-,,-,~ + (Ix,,I  + Ix ' l ) lx , . ,  - x',,I. 

Here Ixnt _< h~ and 

Ix&l _< Ix,,I + tx,~ - x&l <_ h,~ + Q,~lh,~ <_ h,,(1 + ~o./.~2). 

Hence 
I x ( ~ + , ) ,  - x '2 (.+,),1 -< (r~_l + 0~(2 + 0~/~21) ~ = ~-,~. 

This completes the proof of S,~ (ii). 

To prove Sn(iii) assume that  t _> 0 and that x(,~+l), _< tv~.  Let ~ > 0. We 

consider two cases. 

CASE 1: 

CASE 2: 

hn _< Av/~. Now x , ,  _< Av ~, and S,~_,(iii) gives I x - x ' l  ~ ~,~_l(~X)v~. 

hn >_ ,~v'~. Write 

n n 

! e ! x = ~ xkek + x(~+,),e, x' = ~ x'kek + x(,~+,), , 
k = ,  k = ,  

as in 1.2. Applying Sk(i) for 1 < k < n and Sn(ii) we obtain 

n 
t e l  ~2 Ix - x ' l  2 = Ix ,  - x l l  2 + Z Ix~ - x ; I  2 + I x ( ~ + , ) . e  - x ( ~ + , ) ,  t 

k = 2  

n 
I 2 __ (3.03e) 2 + y'~(Oke/hk) 2 + (X(,~+I). + X(n+X).) 

k = 2  

_< O . l e  + ea -2 ~_~ o~ + (t + v ~  + rn)2e = ~,('~,t)2e. 
k = 2  

Since A > 0 was arbitrary, S~(iii) follows. | 

2.8. PROOF OF 2.2. If 10 -2 _< ~ _< 1, we fix a point a E A and choose an 

isometry S: R n -+ 12 with Sa = fa .  Since 1 <_ 10x/~, we get for each x E A 

ISx - f x  I < tSx - Sa  1 + t f x  - fat  <_ 2Ix - a I + ed(A) < 21y~d(A). 

Hence we may assume that c _< 10 -2. 
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Replacing f by the map x ~-~ f (d (A)x ) /d (A)  we may  assume tha t  d(A) = 1. 

Moreover, we can use auxiliary isometries to normalize the si tuat ion so tha t  A 

contains a normalized maximal  n-sequence fi and tha t  f is normalized at ft. The 

theorem follows with S = id and ca = ~a(0) from the case t = 0 of s ta tement  

Sa(iii) of 2.6. The condit ion S R  n C R a is clear from the proof. | 

2.9. NUMERICAL ESTIMATES. For ~ ~ 10 -2, Theorem 2.2 is t rue with cl = 

2.51, c2 = 8.73, c3 = 18.8. 

We next give a more general version of 2.2 by allowing the set A to lie in a 

narrow neighborhood of R a. 

2.10. THEOREM: Suppose that n • N,  that F is an n-dimensional atfine sub- 

space ofl2, that t >_ O, 0 < e < 1, and that A C F + [~(tv~d(A)) is compact. 

Let f: A --+ 12 be an ed(A)-nearisometry. Then there is a surjective isometry 

S: 12 --~ 12 such that IIS - fllA ~-- ~/a(Cat)v/~d(A), where the function 7a is given 

by 2. 7, and Ca depends only on n. 

Proof: We may  again assume tha t  e _< 10 -2  and d(A) = 1. Choose a maximal  

n-sequence fi = ( u ( 0 ) , . . . , u ( n ) )  for A. Let T: 12 --+ 12 be a surjective isometry 

normalized at ft. Then  TA lies in R n +  B(Cntvfc) by Lemma 5.9 in the appendix.  

Hence we may  assume tha t  A c R "  + B(Catv~)  and tha t  A has a normalized 

maximal  n-sequence ft. By another  auxiliary isometry we may  assume tha t  f is 

normalized at ~. Since x(a+l) .  ~_ Catv~  for all x • A, the theorem follows from 

Sa(iii) of 2.6 with S = id. | 

2.11. REMARK. In  2.2 and 2.10, we assumed tha t  A is compact  in order tha t  A 

contain a maximal  sequence. However, the results are true for all bounded sets, 

and they are obtained by an elaboration of the proofs above, using approximate  

maximal  sequences in the natural  sense. Alternatively, we can in 2.2 use an 

extension of f to the closure A. 

Indeed, if A and f A  lie in finite-dimensional subspaces, we can extend an 

s-near isometry f :  A ~ 12 to an s-near isometry g: _~ --+ 12 by sett ing gx = 

l i m j _ ~  f x j  for x E 2~ \ A, where (xj) is an arbi t rary  sequence in A such tha t  

xj --~ x and such tha t  the sequence ( f x j )  converges. 

In  arb i t rary  metric spaces X and Y, one can extend an ~-nearisometry f :  A --+ 

Y, where A C X,  to an er-nearisometry g: fi~ -~ Y for each c r > c by sett ing 

gx = ]y  for x e -~ \ A, where y • A is an arbi t rary  point  with l y - x l  <_ (c ' -~) /2 .  
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2.12. SHARPNESS. We next show that the bound [ [ S -  fl[A ~_ cux/~d(A) in 2.2 

has the correct order of magnitude. Indeed, we show that the theorem is not true 

for small e if cn < 1/2. 

Set A = {0, e l /2 ,e l}  C R. Let 0 < h < 1/2, and define f :  A - +  R 2 by 

f(0) = 0, f (e l )  = el, f ( e l / 2 )  = el /2  + he2. Then f is an e-nearisometry with 

6 ---- h 2, since 

vfi-/4 + h 2 - 1/2 < h 2. 

Assume that S: A --+ 12 is an isometry, and set a -- []S - f[[A. Then S R  is a 

line meeting the three balls B(Sx ,  a), x E A. It follows that a >_ h/2 = v~/2.  

Consequently, for each 0 < e < 1/4 there is a finite set A C R and an e- 
l nearisometry f :  A --4 R 2 such that d(A) -- 1 and []S - f[]A :> ~x/~ for every 

isometry S: R -+ 12. 

3. N e a r i s o m e t r i e s  o f  t h i c k  se t s  

3.1.  SUMMARY. In this section we consider nearisometries f :  A --+ R n, where 

A is compact in R u and A is not very close to any hyperplane. We say that such 

a set is t h i ck  and give the precise definition for the thickness O(A) of A in terms 

of projections onto lines. An alternative characterization for thickness in terms 

of heights of simplexes is considered in 3.13. 

We show that e-nearisometries of thick sets can be approximated by isometrics 

with error term of the form ce instead of cx/e. Compactness can again be replaced 

by boundedness; see 2.11. 

3.2. THICKNESS. For each unit vector e E S n-1 we define the projection 

re: R '~ -+ R by rex = x . e .  Let A ~ ~ be a bounded set in R u. The t h i c k n e s s  

of A is the number 

O(A) = inf{d(reA) : e C SU-1}. 

Alternatively, O(A) is the infimum of all t > 0 such that A lies between two 

parallel hyperplanes F, F ~ with d(F, F')  -= t. We have always 0 < O(A) <_ d(A). 

3.3. THEOREM: Suppose that 0 < q ~_ 1 and that A C R u is a compact set with 

O(A) >_ qd(A). Let f:  A -+ R u be an e-nearisometry. Then there is an isometry 

S: I:t n --+ R u such that [[S - f[[A (_ cue~q, where an depends only on n. 

The proof of 3.3 will be given in 3.7. 
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3.4. COROLLARY: Suppose tha t  q and f :  A --+ R n are as in 3.3. Then f has an 

extension to a 5-nearisometry g: R,` --+ R,` with ~ = c,`e/q. 

Proof: Set gx = Sx  for x E R,` \ A, where S is given by 3.3. 1 

3.5. AN INDUCTIVE STATEMENT. Theorem 3.3 will be proved by induct ion on 

n. For this purpose, let n > 1 be an integer and let T,` be the following s ta tement :  

T,~: Suppose tha t  A = {0, el, u ( 2 ) , . . . ,  u(n), x} C 12 is such tha t  the n-sequence 

= (0, el, u ( 2 ) , . . . ,  u(n)) is normalized and maximal  in A with u(n),` > 0. Let 

f :  A --+ 12 be an ¢-nearisometry with c < 10 -2 A 4u(n)2~, normalized at ft. Then  

(i)  Ix,, - x ' l  _< O,`e/u(n),`, 
(ii) 2 _ x,2 IX(n+l). (n+l)*l --~ "INC. 

The numbers  0n and ~-,` depend only on n, and they are obtained from the 

following recursive formulas: 

0 1 = 3 . 0 3 ,  T 1 = 6 . 2 ,  

n--1 

o .  = 3 .02  + r,`-i V/1 + T,`--I q- 2 E Pk(1 + 20k), 
k=l 

T,` = T,`-I + 20n(1 + 20,`). 

3.6. LEMMA: Statement Tn is true for all n > 1. 

Proof" The case n = 1 follows from 2.5 with auxiliary rotations.  Assume tha t  

n > 2 and tha t  Tk is t rue for 1 < k < n -  1. Let f :  A --~ 12 be as in T,`. Write 

hk = u(k )k and h' k = u(k )~. From the maximal i ty  and normalizat ion conditions 

it follows tha t  

1 = h l  > . - . > h a > 0 ,  

and tha t  

(3.a) ]xk] <_ xk. <_ u(k)k.  = hk, 

for all 1 < k < n. Moreover, 

(3.5) 

for all 1 < k < n. 

To prove T,` (i) we first observe tha t  

(3.c) 

c < 4h 2 _< 4h~ 

U ! 
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As in the proof of 2.7, we have tx • u (n)  - x '  • u (n) '  I <_ 3.015e. Since 
u(n) ,  u (n) '  C R n, we obtain 

n-1 
lxnhn -- x ' h ' l  < Ix" u(n)  -- x ' .  u @ ' l  + ~ I~*u(~)k -- ~ l u ( n ) i l  

k=l 
n--1 

< 3.01s~ + Y:~(l~k - x i l lu(n)kl  + Ixitlu(~)~ - u(~) i l ) .  
k = l  

From (3.b) it follows that  Tk holds for the restrictions of f to the sets 

A k = { 0 , e l ,  u (2) , . . . , u (k) ,x} ,  B k = { 0 ,  el, u (2 ) , . . . , u (k ) ,u (n)}  

for all 1 < k < n - 1. From Tk(i) for f l A k  we get for these k 

Ixk -x'kl < ek~/hk, 

Ix~l < I~kl + Ixk - x'kl <_ hk + Ok~/hk < (1 + 4ek)hk, 

since ~ < 4h 2 <_ 4h~. 

Furthermore, Tk(i) for f l B k  gives, together with (3.a), 

Since lu(n)kl  <_ hk by the maximality of fi, these estimates yield 

n - - 1  

(3.d) Ixnhn - x'nh'nl <_ 3.015e + 2e ~ Ok(1 + 2Ok). 
k = l  

Applying Tn_l(ii) to flA,~-~ we obtain 

(3.e) Ix~l < Ix'n.I _< v/x2. + r,~_le _< hnx/'l + r,~-t, 

and Tn-l(ii) f o r / I B . - ~  gives 

(3.f) Ihn - h"  I - Ih2 - h'2l r n - l e  h n - ; ~  <- h---T' 

in view of (3.a). Condition Tn(i) follows now from the estimates (3.c)-(3.f). 

To prove Tn (ii) we first observe that  

Ix(2+1),  - x ,2 x,2 - -  - -  X r t ] ,  

Applying Tn-l(ii) to IIA~-~ we get 

I~L - x ' L  -< - . - , ~  
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Fur thermore ,  T~(i) implies t ha t  

]x~l < Ix,~i + ]x,~ - x~l < h,~ + ~,~e/h,~ < h,~(1 + 4Q~). 

Together  with Tn(i) and (3.a), this implies tha t  

- <_ ( I x . I  + Ix'l)lx  - x ' l  <_ (hn + hn(1 + 4Q,~))Qne/hn 

= 2 e , , ( 1  + 

These  es t imates  yield Tn (ii). | 

73 

3.7. PROOF OF THEOREM 3.3. We may  assume tha t  d(A)  -- 1. Choose a 

max ima l  n-sequence fi = ( u ( 0 ) , . . . ,  u(n))  in A. Performing auxil iary isometries 

we may  assume tha t  fi is normalized and tha t  f is normalized at  ft. Then  u(0) -- 0 

and u(1) -- el.  Set t ing hk = u(k)k  we have 1 -- hi _> - ' -  _> h~. Moreover,  since 

Ix,~l < hn for all x C A, we have 2hn > O(A) > q. 

I f  q2 < e < 1, we apply  2.2 to get an i sometry  S with  I I S -  f l lA <-- Cnv~ =- 
< 

I f  e >_ 10 -2, then 

Ix - x '  I <_ Ixl + Ix'l < 2 + e <: 201e <_ 201e/q, 

and hence S -- id is the desired approx imat ion  of f .  

Finally, let e _< 10 -2  A q2. Then  ¢ _< q2 _< 4h~ for all 1 < k < n. 

We show tha t  S = id is the desired isometric  approx imat ion  of f .  Let x E A. 

For 1 < k < n, we can apply  condit ion Tk(i) of 3.5 to fl{O, el, u ( 2 ) , . . . , u ( k ) , x }  
and obta in  

[xk - x~l <_ ~ke/hk <_ 2~ke/q. 

Consequently,  

]x - x'l 2 = Ixk - x'k]2 <-- 4e2q-~ E P~' 
k = l  k----1 

2 2 4 n which gives Ix - x '  I <_ cne/q with c n = F-,k=l Ok. | 

3.8. NUMERICAL ESTIMATES. For c _< q2 A 10 -2 ,  Theorem 3.3 is t rue  with 

Cl -- 6.06, c2 = 126, c3 = 4 .106 .  

3.9.  SHARPNESS. We show tha t  the bound  tlS - f[]A <_ cae/q has the correct  

order  of magni tude  as a function ofq .  For 0 < q < 1/2 let A be the set {0, u, el}, 

w h e r e u  = e l / 2 + q e 2 .  T h e n 0 ( A )  = q and d(A)  = 1. For 0 < h < q/3 define 
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a map f :  A --+ R 2 by f (0)  : 0, f ( e l )  -- el, f ( u )  = u q-he2. Then f is an 

e-nearisometry with e = 7qh/3,  since 

~/1/4 + (q + h) 2 - V/1-/4 + q2 < 2qh + h 2 < 2qh + qh /3  = e. 

If  S: R 2 --+ R 2 is an isometry with I IS - f l IA  <_ a, then q + h - 2 a  < q, and hence 

a > h /2  > s/6q.  Consequently, for every 0 < q < 1/2 and 0 < e < 7q2/9 there is 

a set A c R 2 and an ~-nearisometry f :  A --> R 2 such tha t  O(A) = q, d(A)  = 1, 

and IIS - f t lA >- ~/6q for every isometry S: R 2 --+ R 9. 

3.10. JOHN'S METHOD. The proofs of 2.2 and 3.3 were, unfortunately,  techni- 

eally complicated.  On  the other  hand, F. John  [Jo] has given an elegant proof  

for isometric approximat ion of locally (1 +~)-bilipschitz maps  f :  G --+ R n, where 

the domain G C R n belongs to a class later called John  domains. For example, 

G may  be a convex domain with B(xo ,  r) C G C B(xo ,  cr) with a given c _> 1. 

We next show tha t  John ' s  ideas can be applied to approximate  a nearisometry 

f :  A -+ R n provided tha t  the set A C R n possesses "enough or thogona l i ty ' .  

The proof  is based on the following fact; see [BL, page 349]. 

3.11. LEMMA: I rA:  R '~ ~ R n is a linear m a p  such that  IAei • Ae j  - ei • ejl <_ t 

for all i and j ,  then there is a linear orthogonal map  T such that  IA - T I < at, 

where I" I is the operator norm. 

3.12. THEOREM: Suppose that  n >_ 2, that  A c [3'*(xo,R), and that  A contains 

points  Xo, Xo + ru l  , • • •, xo + rUn, where 0 < r <_ R,  and the vectors ul  , • • •, un are 

orthonormal. Let  f :  A --+ R n be an e-nearisometry. Then  there is an i sometry  

S: A --~ R '~ such that  Sxo = f x o  and ItS - f l lA < IOn3/2RE/r. 

Proof: We may normalize the si tuat ion so tha t  x0 = 0 = f xo ,  r = 1, ui -- ei. I f  

e > 1/4, we can choose S -- id, since 

Ix- f x  I < lxl + Ifxl  <_ 2R + e < 9Re  

for all x E A. Assume tha t  e < 1/4. Applying again the basic formula 2a .  b = 

lal 2 + Ib[ 2 - l a  - bl 2 we get for all x, y • A 

2 l f x .  f y  - x .  Yl <- (Ixl + Ifxr)~ + (lYl + Ifyl)c  + (Ix - yl + If  x - f y l ) c  

_< (21x[ + 1/4)c  + (21yl + 1/4)~ + (2Ix - yl + 1/4)E, 

and hence 

(3.g) [ f x .  f y  - x Yl ~ (Ixl + lYl + Ix - Yl + 3/8)c.  
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Then (3.g) Let L: R n --+ R n be the linear map with Lei = fei ,  1 < i < n. 

implies that  

[Lei. Lej - ei" ej[ < (1 + 1 + x / 2 +  3/8)e _< 3.8~. 

By 3.11, there is an orthogonal map T: R n --+ R n with IT - LI _< 3.8ne. By (3.g) 

we get 

l ( f x -  T x ) .  Teil < Ifxl ITei - Leil + I fx"  fe i  - x .  eil 

_< 3.8nc(R + 1/4) + (R + 1 + R + 1 + 3/8)e _< 9.2nRe 

for all x E A and 1 < i < n. Since the vectors Tei are orthonormal,  this implies 

I fx  - T x  I << 9.2n3/2R~. | 

3.13. SIMPLICIAL THICKNESS. Let A be a k-simplex in 12, and let A ° be the 

set of vertices of A. We let b(A) denote the smallest height of A, that  is, the 

smallest distance between a vertex of A and the affine subspace spanned by the 

opposite face. 

For a bounded set O ~ A C R u, the number 

Os(A) = sup{b(A) : A is an n-simplex, A ° C A} 

is the s impl i c i a l  t h i c k n e s s  of A. A localized version of this concept has been 

used in IV/i] and [VVW]. 

I t  is rather obvious that  the numbers O(A) and Os(A) cannot be too different 

from each other, and in the next result we show that  the ratio Os(A)/O(A) lies 

between two positive bounds. It  is perhaps not so obvious that  the upper bound 

must depend on the dimension n, but if A is a regular unit n-simplex, then 

~s(A) > l / v ~  while ~(A) is roughly V/2/n. 

3.14. THEOREM: I r A  ~ 0 is a bounded set in R n, then 

O(A)/2 _< Os(A) <_ (n + 1)O(A)/2. 

Proof  We may assume that  A is compact.  Choose an n-simplex A with A ° C A 

such that  the volume of A is maximal. Write b(A) = d(v, E)  where v is a vertex 

of A and E is the atfine subspace spanned by the opposite face. Now A lies in 

E + / ) ( b ( A ) ) ,  since otherwise we could find a simplex with larger volume. This 

proves the first inequality. 

The second inequality follows from Theorem 5.3 in the appendix. For an even 

n we have a bet ter  estimate Os(A) <<_ nO(A)/2. | 
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4. Q u a s i s y m m e t r i c  a n d  n e a r s y m m e t r i c  m a p s  

In this section we consider the approximation of maps by similarities instead of 

isometries. 

4.1. QUASISYMMETRY. We first recall the concept of a quasisymmetric map. 

In this section, we let X and Y denote metric spaces, and the distance between 

points a and b in each space is written as ta - b I. A p r o p e r  t r i p l e  in X is a 

triple T = (x; y, z) of points in X such that  y # x ¢ z. The r a t i o  of a proper 

triple T = (x; y, z) is the number 

ITI - tx - yl 
Ix z ]  

An injective map f :  X --~ Y maps each proper triple T -- (x; y, z) in X to the 

proper triple 

T' = f T  = (fx; f y ,  f z )  

in Y. 

Let 7: [0, co[-+ [0, co[ be a homeomorphism. An injective map f :  X --+ Y is ~/- 

q u a s i s y m m e t r i c  if IT'[ _< ~/(tTt) for every proper triple T in X.  For 0 < s < 1, 

a map f :  X --+ Y is s - q u a s i s y m m e t r i c  if f is ~/-quasisymmetric for some ~/and 

if IT'l <_ ITI + s for all proper triples in X with IT1 <_ 1/s. For s = 0, this means 

that  IT'[ = ITI for all T, and f is a s imi l a r i ty .  

4.2. NEARSYMMETRY. Let 0 < s < 1. We say that  an injective m a p / :  X --+ Y 

is s - n e a r s y m m e t r i c  if IT'l < [T[ + s  for all proper triples T in X with IT[ < 1/s. 

An s-quasisymmetric map is trivially s-nearsymmetric,  but an s-nearsymmetric 

map need not be ~-quasisymmetric for any T/. However, this is the case if the 

space X has suitable connectedness properties; see [TV, 3.10] and [V~, 2.3]. 

We show that  suitably normalized nearsymmetric maps are nearisometries, 

and we apply this fact to prove that  nearsymmetric (and hence quasisymmetric) 

maps can be approximated by similarities. 

4.3. LEMMA: Suppose that f: X -+ Y is s-nearsymmetric and that T is a proper 

triple in X with ITI < r where r >_ 1. Then 

IT'I _> IT I -  r2s. 

Proof: We may assume that  s > 0. Let T = (x ;y ,z) .  Then U = (x ;z ,y )  

is a proper triple. If ITI < rs, the lemma holds trivially. If  ITI >_ rs, then 

IUI = [T1-1 <_ (rs) -1 < s -1, and hence 

I T ' V  1 - -  IU'l ~ IUI + s = IT1-1 ÷ s .  
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This implies tha t  IT'I > ITI - s '  where 

s' - ITI2----~-s < IT]2s <_ r2s.  | 
1 + s i T  { 

4.4. THEOREM: S u p p o s e  tha t  0 <_ s < 1/2 and t ha t  f :  X ~ Y is s-near- 

s y m m e t r i c .  S u p p o s e  also tha t  there are po i n t s  a, b E X wi th  la - b] = 1 -- d ( X )  

and  I fa  - f b  I = 1. T h e n  f is a 6s -near i sometry .  

Proof:  Let x, y C A, x ~ y. Since Ix - a] + Ix - b] _> ]a - b I = 1, we may assume 

tha t  Ix - a] _> 1/2. Then  T1 = (x; y, a) and T2 = (a; x, b) are proper  triples in X,  

and 

i x - y l = [ T l l l T 2 1 ,  i f  x - f y t = l T ~ l l T ~ l ,  t7111<-2, I T 2 1 < l .  

Since s _< 1/2, it follows from the nearsymmet ry  of f tha t  

I f  x -  f Y l  = ]7;I]T~] <- (IT, I + s)(tT2] + s) 

= lx - yl  + IT ls + IT21s + 

< I x -  y] + 4s. 

Since ITs[ < 2 and IT2[ _< 1, Lemma 4.3 gives 

}T;t >__ IT1] -  4s, IT~I > IT2I -  s. 

Here IT21 = Ix - a I > 1/2 _> s, and hence 

I f x  - f y l  = IT;IIT I > ( ITl l -  4s)(IT21- s) 

= lx - y] - 4 s l x  - a I - s]x - y ] / l x  - a] + 4s 2 >_ ]x - yi - 6s. 

Hence f is a 6s-nearisometry. | 

4.5. THEOREM: S u p p o s e  tha t  A C R "  is c o m p a c t  and  tha t  f :  A -+ 12 is s- 

n e a r s y m m e t r i c  w i th  s < 1/2 .Then  there is a sur jec t i ve  s imi lar i t y  S: 12 --+ 12 such 

tha t  ]IS o f - id HA -< envrgd(A) ,  where cn d e p e n d s  on ly  on n.  I f  f A C R ~, we 

can choose S so that  S R  n = R n. 

Proof:  Choose points a ,b  E A with ]a - b I = d ( A )  and set Ao = A / d ( A ) ,  

M = Ira - f b  I. The  map g: A0 --+/2, defined by g x  = f ( d ( A ) x ) / M ,  is s-near- 

symmetric .  From Theorem 4.4 it follows tha t  g is a 6s-nearisometry. By Theorem 

2.2, there is a surjective isometry So: 12 -~ 12 such tha t  [ISo --gllAo <-- c~vfg-sd(A)  • 

Sett ing S x  = d ( A ) S o l ( x / M )  we obtain a surjective similarity S: 12 ~ 12 with 

IIS o f - id IIA <- c n v f 6 s d ( A )  • | 

Similarly, Theorems 3.3 and 4.4 give the following result: 
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4.6. THEOREM: Suppose that 0 < q _< 1 and that A C I t "  is a compact  set with 

8(A)  >_ qd(A).  Let  f :  A -+ R "  be s-nearsymmetr ic  with s <_ 1/2. Then there is 

a similarity S: R '~ -+ R "  such that  I [ S o f - i d  [[A ~-- cnsd(A) /q ,  where cn depends 

only on n. 

5. Appendix: Simplexes 

In this appendix we prove some elementary results on simplexes, needed in the 

proofs of 2.10 and 3.14. However, they are not needed in the proofs of the main 

results 2.2 and 3.3. 

5.1. LEMMA: Suppose that  A C R ~ is an n-s implex  with vertices a o , . . . ,  ap, 

bo , . . . ,  bq, where aj • R ~-1 and bj • R '*-i + e , .  Set 

E = af f{ao , . . . , ap) ,  F = aff{bo,. . . ,bq).  

Then E A (F  - e , )  # 0 .  

Proo~ We may assume that a0 = 0. Set y = b 0 - e ,  and kj = bj - b o ,  1 < j <_ q. 

Then 

E = span{a1, . . . ,  ap}, F = bo + span{k1, . . . ,  kq}. 

Since A is an n-simplex, the vectors a l , . . . ,  ap, b0, . . . ,  bq form a basis of R n. 

Hence we can write 

y = s ia l  + " • + Spap + tobo + "'- + tqbq 

= s ia l  + ' " +  Spap + (to + " "  +tq)bo + t l k l  + . . . +  tqkq. 

Since the vectors y, aj,  kj  lie in R "-1 while bo ~ R "-1,  this implies 

S l a l  + ' ' "  d- Spap : y - t i k i  . . . . .  tqkq • E A (F  - en). 1 

We recall some notation from Section 3. For e 6 S n- l ,  the projection ~re: R" -+ 

1% is defined by r e x  = x . e .  The thickness of a bounded set A C R n is O(A) = 

mind(TreA) over e • S n-1.  The smallest height of a simplex A is b(A), and A ° 

is the set of vertices of A. 

5.2. LEMMA: Let  A C R n be an n-simplex,  and let z • S "~-1 be such that  

d(Tr~A) = 0(A). Then r z A  is an interval [a, b] such that  r z A  ° = {a, b}. 

Proo~ Assume that the lemma is false. Then A has a vertex v such that 7r~v 

is an interior point of the interval J = 7r~A. Let A1 be the (n - 1)-face of A 
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oppos i te  to  v. Then  J = ~rzA1. There  is (~ > 0 such t h a t  ~eA1 = ~e A whenever  

e E S n -1  and  I e - z] < 5. We m a y  assume tha t  0 E E = a f fA1 .  We can wr i te  

z = el  c o s a  + e2 s i n a ,  where 0 < a < ~ /2 ,  and  e l ,  e2 are uni t  vectors  such t ha t  

e l  E E a n d  e2 _1_ E .  For 0 _< ~ < r / 2 ,  we set e~ = e l c o s ~ + e 2 s i n ~  and  

g(~)  = d ( r ~ A 1 ) .  Then  g(~)  = g ( 0 ) c o s ~ ,  and  hence g is s t r i c t ly  decreasing.  

Choosing ~ E ] a , r / 2 ]  wi th  ]e~ - e~] < ~ we have g(e~)  < g(e~)  = g(z),  and  

hence d ( r ~ A )  is not  min imal .  I 

5 .3 .  THEOREM: L e t  /k C R n be  a n  n-simplex. Then b(A) <_ (n + 1 )0 (A) /2 .  

is even, then < 

Proo~ Wri te  n = 2k - 1 if n is odd  and n = 2k if n is even. 

We may  assume tha t  O(A) = 1. Choose a vector  z E S '*-1 such t h a t  d(TrzA) = 

~(A) .  We m a y  assume tha t  z = e~ and t ha t  0 _< xn _< 1 for all  x E A. We mus t  

show tha t  b(A) < k. 

By 5.2 we have A ° C R '~-1 U ( R  ~-1 + en). Wri te  A ° = { a o , . . . ,  ap, b o , . . . ,  bq} 

where aj E R n- l ,  bj E R n-1  + e~. Then  p + q -= n - 1. We may  assume t h a t  

p _< q, and  hence p <_ k - 1. I f p  = 0, then  b(A) _< d(ao, R n-1  + e n )  -- 1. Assume 

tha t  p :> 1. Set 

E - - a f f { a o , . . . ~ a p } ,  F =- af f{bo, . . . ,bq} .  

By 5.1 there  is a po in t  xo E E N ( F  - en). Since xo E E ,  we can wri te  

P P 

Xo---- E tiai, where E ti = l.  
i=0 i=0 

We may  assume tha t  to >_ 1/(p + 1). Set  

v 
1 E tiai. 

a -  1 - t o  ~=1 

Then  a E a f f { a l , . . . , a p }  and xo -- (1 - to)a + toao. 

Let T be the  affine (n - 1)-space spanned  by  the face of A oppos i te  to  ao. 

T h e n a E T a n d x o + e . E F c T .  H e n c e y E T w h e r e  

Consequent ly ,  

y = a + (Xo + en - a)/ to = ao + e,~/to. 

b(A) < d(ao, T)  < iao - Yl _-- l / to  _< p +  l < k. I 
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5.4. REMARK. One can show that  the bounds in 5.3 are sharp. In the rest of 

the appendix, we do not t ry to get best possible estimates. 

We fix an integer n > 2 and let a (A)  denote the (n - 1)-dimensional volume 

of an (n - 1)-simplex A. 

5.5. LEMMA: Let J C i tn be a closed n-interval with edges t l , . . . , t n ,  where 

tj >_ tn for all j .  Let A C J be an (n - 1)-simplex. Then 

a (A)  _< cntl"" " t~- l ,  

where an depends only on n. 

Proo~ Assume first that  J is a cube with tj  = tn for all j .  Since A lies in 

a ball B of radius t nv~ /2 ,  we have a (A)  < a(A1) , where A1 is the regular 

(n - 1)-simplex inscribed to B. Hence a (A)  _< cntn~ -1 with 

c~(n - 1)n n-1 

c ,  = (2n - 2)("-1)/2 '  

where a (n  - 1) is the volume of the unit (n - 1)-simplex. 

In the general case let f :  i t "  --> i tn  be the linear map 

I x  = ( t lx l / t , , ,  . . . ,  t , ,_ lX,_l / t , , ,  x , ) ,  

and let Q be the cube [0, t,~] n. Then f Q  = J. For any (n - 1)-simplex A C I tn 

we have a ( f A )  <_ t l . . .  t n - la (A) / t~  -1. Since f - l A  C Q, the special case gives 
n - - 1  a ( f - l A )  _< c , t  n , and the lemma follows. | 

5.6. NOTATION. Let A C 12 be an n-simplex, and let fi -- ( u ( 0 ) , . . . , u ( n ) )  be 

a maximal  n-sequence in A in the sense of 2.4. Then the points u(j) are the 

vertices of A. As before, we set 

hj = d ( u ( j ) , a f f { u ( O ) , . . . , u ( j -  1)}), 1 <_ j <_ n. 

The sequence ~ and the numbers hj are not uniquely determined by A. The 

volume of A is 

(5.a) m( A ) = h i ' "  hn/n!. 
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5.7. THEOREM: Let A C 12 be an n-simplex with maxima/n-sequence ~. Then 

hn <_ dnb(A), where dn depends only on n. 

Proof: We may assume that  ~ is normalized, that  is, u(0) = 0 and u(j)  E Ri+ 

for 1 < j < n. Then A C R n. Moreover, A lies in the n-interval 

J = [0, hl] × [ - h 2 ,  h2] × - . . ×  × [0, 

Let A be an (n - 1)-face of A with a(A)  maximal. Then 

re(A) = a(A)b(A) /n .  

Furthermore, since A C J and since hi _> . . .  > hn, Lemma 5.5 gives 

a(A) < 2U-2cnhl . . .  hn-1. 

By (5.a) we obtain h~ _< d,~b(A) with d ,  = 2'~-2(n - 1)!c~. | 

5.8. REMARK. The well-known formula 

2k/2k! 

yields the explicit expression d ,  = n(2'~-l)/2(n - 1)(1-n)/2/2, which is not the 

best possible constant. 

The following result was needed in 2.10. 

5.9. LEMMA: Suppose that F is an n-dimensional affine subspace of 12, that 

t >_ O, that A is a compact subset o f F  + [l(t), and that fi = (u (0 ) , . . . ,  u(n)) is a 

maximal n-sequence in A. Let T: 12 -4 12 be an isometry, normalized at  ~. Then 

T A  C R n + [~(Cnt), where C~ depends only on n. 

Proof: Let x E  A. We may assume that  T x C  R ' ~ + I \ R  '~. Let A C  R ~+1 be 

the (n + 1)-simplex with vertices T u ( 0 ) , . . . ,  Tu(n),  Tx.  Let P:  12 -+ R '~+1 be 

the orthogonal projection, and set F1 = P T F .  Then A C F1 + /} ( t ) ,  and hence 

0(A) _< 2t. The lemma follows from 5.3 and 5.7 with C,~ = (n + 2)dn+~. | 
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